

Stoichiometry

- Chemical formula
- Chemical equation
- Chemical calculations
- The mole
- Empirical formula and molecular formula

Paper 2

1. Which compound has the largest relative molecular mass, Mr?	J. 02	(9)
A. CO ₂		

- B. NU2
- **C.** SiO₂
- **D.** SO₂

2. What is the formula	of copper(II)	oxide and of sulfur hexafluoride?	J. 02	(10)
------------------------	---------------	-----------------------------------	-------	------

	copper(II) oxide	sulphur hexafluoride
Α	CuO	S ₆ F
в	CuO	SF ₆
С	Cu ₂ O	S ₆ F
D	Cu ₂ O	SF ₆

3. The relative atomic mass of oxygen is 16 and that of hydrogen is 1. J. 03 (9)

This means that ...(i)... of oxygen has the same mass as ...(ii)... of hydrogen.

Which words correctly complete the gaps?

	gap (i)	gap (ii)
Α	an atom	thirty-two molecules
в	an atom	eight molecules
С	a molecule	sixteen atoms
D	a molecule	eight atoms

4. Water is formed when 48 g of oxygen combine with 6 g of hydrogen. J. 03 (11)

What mass of oxygen combines with 2 g of hydrogen?

A. 12 g B. 16 g C. 96 g D. 144	A. 12 g	B. 16 g	C . 96 g	D. 144 g
--	----------------	----------------	-----------------	-----------------

Grade (10) N. 03 (10)

5. Two gases react as shown.

$X_2 + Y_2 \rightarrow 2XY$ reactants product

When measured at the same temperature and pressure, what is the value of

volume of product	0
volume of reactants	!

- **A.** 1/2 **B.** 1
- **C**. 2
- **D**. 4
- 6. Carbon and chlorine form a chloride. N. 03 (11)
 - N. 08 (11)

What is the formula of this chloride?

- **A.** CC/₂
- **B.** CC/₄
- **C.** CaCl₂
- D. CaCl₄

7. The compound ethyl mercaptan, C_2H_5SH , has a very unpleasant smell. **J. 04** (10)

What is its relative molecular mass?

A. 34	B. 50	C. 61	D. 62

8. When propane is burned, carbon dioxide and water are formed, as shown. N. 04 (9)

 $C_3H_8 + 5O_2 \longrightarrow r CO_2 + s H_2O$

Which values of r and s balance the equation?

	r	s
Α	1	3
в	1	5
С	3	4
D	3	8

9. For which compound is the formula correct?

	compound	formula
Α	ammonia	NH4
в	carbon monoxide	CO ₂
С	iron(III) oxide	Fe ₃ O ₂
D	zinc hydroxide	Zn(OH) ₂

10. The equation shows the reaction that occurs when ethanol burns in air. N. 05 (9)

 $C_2H_5OH \ + \ x \ O_2 \ \rightarrow \ y \ CO_2 \ + \ z \ H_2O$ Which values of x, y and z are needed to balance this equation?

	x	у	z
Α	2	2	2
в	2	2	3
С	2	3	3
D	3	2	3

11. The diagrams show the molecules of three elements.

J. 06 (9)

 \sum_{2}

Which of these elements are present in water?

- A. 1 and 2 only
- B. 1 and 3 only
- C. 2 and 3 only
- **D.** 1, 2 and 3

Grade (10) J 05 (10) **12.** Magnesium and sulfur each form a chloride.

What could be the formulae of these chlorides?

	magnesium	sulphur
Α	Mg ₂ Cl	S ₂ Cl
в	Mg ₂ Cl	SCl2
С	MgC l ₂	S ₂ Cl
D	MgC l ₂	SC12

13. A gas has the molecular formula NOC1.

Which diagram could show molecules of the pure gas NOCI?

N. 06 (10)

N 06 (9)

IGCSE Grade (10) **14.** Boron, B, forms an oxide. Which equation is correctly balanced? **A.** 2B + $3O_2 \rightarrow$ B₂O₃ **B.** 2B + $3O_2 \rightarrow$ 2B₂O₃ **C.** 4B + 2O₂ → 2B₂O₃ **D.** 4B + $3O_2 \rightarrow 2B_2O_3$

15. For which compound is the formula correct?

	compound	formula
Α	ammonium chloride	NH₃C1
в	copper(II) sulphide	CuS
С	iron(II) sulphide	Fe ₃ S
D	silver nitrate	Ag ₂ NO ₃

16.

J. 08 (18)

When written as formulae, which compound has the greatest number of oxygen atoms?

- **A.** calcium oxide
- **B.** copper(II) oxide
- **C.** iron(III) oxide
- **D.** potassium oxide

17. Nitrogen and hydrogen react together to form ammonia. J. 09 (10)

$$N_2 \ + \ 3H_2 \ \rightarrow \ 2NH_3$$

When completely converted, 7 tonnes of nitrogen gives 8.5 tonnes of ammonia.

How much nitrogen will be needed to produce 34 tonnes of ammonia?

A 7 tonnes B 8.5 tonnes C 28 tonnes I	D 34 tonnes
---------------------------------------	-------------

J. 08 (10)

J. 07 (10)

Grade (10)

18. Which relative molecular mass, Mr, is not correct for the molecule given? J. 09 (11)

	molecule	Mr
Α	ammonia, NH ₃	17
в	carbon dioxide, CO2	44
С	methane, CH ₄	16
D	oxygen, O ₂	16

19. Hydrogen and chlorine react as shown.

1 molecule of hydrogen + 1 molecule of chlorine \rightarrow 2 molecules of hydrogen chloride

What is the equation for this reaction?

- **A.** $2H + 2CI \rightarrow 2HCI$
- $\textbf{B}. \hspace{0.2cm} 2H \textbf{+} 2Cl \rightarrow \hspace{0.2cm} H_2Cl \hspace{0.2cm}_2$
- $\textbf{C}. \hspace{0.1in} H_2 + Cl_2 \rightarrow \hspace{0.1in} 2HCl$
- **D.** H₂ + Cl $_2 \rightarrow$ H₂Cl $_2$

J. 2016 p 21 (8-9)

A compound, X, contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen by mass.
 The relative molecular mass, *M_r*, of X is 60.
 What is the molecular formula of X?

A CH_2O **B** CH_4O **C** C_2H_4O **D** $C_2H_4O_2$

25 cm³ of 0.1 mol/dm³ hydrochloric acid exactly neutralise 20 cm³ of aqueous sodium hydroxide.
 The equation for this reaction is:

NaOH + HCl \rightarrow NaCl + H₂O

What is the concentration of the sodium hydroxide solution?

- A 0.080 mol/dm³
- B 0.800 mol/dm³
- C 0.125 mol/dm³
- D 1.25 mol/dm³

IG	CSE								Grade	e (10)
								J	l. 2016 p 22 (8-	9)
22	As	sample of 16.	0 g of a	metal oxide,	MO, is r	reduced to 1	2.8g of t	he metal, <mark>M</mark> .		
	Wł	nat is the rela	tive ator	mic mass, A _r	, of M?					
	A	32	В	64	С	80	D	128		
23	Th	e equation fo	or the rea	action betwe	en calciu	um carbonat	te and hy	drochloric aci	id is shown.	
			CaCO	3(s) + 2HC	l(aq) →	CaCl ₂ (aq)	+ H ₂ O(I) + CO ₂ (g)		
	Ho	w many mol cess of the a	es <mark>of ca</mark> cid?	lcium carbo	nate wi <mark>l</mark> l	give 24 cm	³ of carbo	on dioxide w	hen reacted with a	an
	Α	1 mol	В	0.1 mol	С	0.01 mol	D	0.001 mol		
								J	. 2016 p 23 (8-9)
24	A	nalysis of a c agnesium ar	compour nd 5.6 g d	nd formed be of nitrogen.	etween r	nagnesium	and nitro	gen showed	it contained 14.4 g	g of
	W	/hat is the en	npirical f	ormula of the	e compo	und?				
	A	Mg ₂ N ₃	В	Mg ₃ N ₂	С	Mg ₄ N ₆	D	Mg ₆ N ₄		
25	A	n excess of z	inc is ac	Ided to 100 c	cm ³ of 1.	0 mol/dm ³ h	nydrochlo	ric acid.		
	Т	he equation f	or the re	action is:						
				Zn	+ 2HC	$l \rightarrow ZnCl_2$	+ H ₂			
	W	/hat is the ma	aximum	volume of hy	/drogen	evolved at r	oom tem	perature and	pressure?	
	A	1.2 dm ³	в	2.0 dm ³	С	2.4 dm ³	D	24 dm ³		

IGCSE Grade (10)
Paper 4
 N. 01 (2. c) (c) Potassium chlorate, which has a formula of the type, KClO_n, decomposes to form oxygen. 2.45 g of the chlorate produced 1.49 g of potassium chloride and 0.72dm³ of oxygen at r.t.p. Find the value of n.
KClOn \longrightarrow KCl + O ₂
Mass of one mole of KCI = 74.5 g
Number of moles of KCI formed =
Number of moles of oxygen molecules formed =
Number of moles of oxygen atoms =
Mole ratio KCI : O is
n =
[4]
2. N. 01 (3. a) Propane is an alkane. It has the structural formula:
H H H HCH H H H
(a) The equation for the complete combustion of propane is given below. Insert the two missing volumes.
$C_{3}H_{8(g)}$ + $5O_{2(g)}$ \longrightarrow $3CO_{2(g)}$ + $4H_{2}O_{(I)}$
Volume of gas/cm ³ 15

IGCSE Grade (10)
 J. 02 (5. c, d) (c) A 20 cm³ sample of butyne, C₄H₆, is burnt in 150 cm³ of oxygen. This is an excess of oxygen.
$2C_4H_{6(g)}$ + $11O_{2(g)}$ \longrightarrow $8CO_{2(g)}$ + $6H_2O_{(l)}$
(i) What volume of oxygen reacts?
[1]
(ii) What volume of carbon dioxide is produced?
[1]
(iii) What is the total volume of gases left at the end of the reaction?
[1]
(d) Calculate the mass of water formed when 9.0 g of butyne is burnt. The mass of one mole of butyne is 54 g.
from the above equation, 1 mole of butyne forms 3 moles of water
number of moles of butyne reacted
number of moles of water formed
mass of water formed g [3]
 4. N. 02 (1. c) (c) The results of an investigation into the action of heat on copper(II) sulphate-5-water, a blue crystalline solid, are given below.
The formula is $CuSO_{4.5}H_{2}O$ and the mass of one mole is 250 g
A 5.0 g sample of the blue crystals is heated to form 3.2 g of a white powder. With further heating this decomposes into a black powder and sulfur trioxide.
(i) Name the white powder.
[1]

IGCSE	Grade (10)
(ii) What is observed when water is added to the white powder?	
	[1]
(iii)Name the black powder.	[1]
(iv) Calculate the mass of the black powder. Show your working.	
	[3]
4.(f) Sodium reacts with sulfur to form sodium sulfide.	02 (3. f)
2Na + S → Na₂S	
An 11.5 g sample of sodium is reacted with 10 g of sulfur. All of the sodium reacted there was an excess of sulfur.	ed but
Calculate the mass of sulfur left unreacted.	
(i) Number of moles of sodium atoms reacted =	
[2 moles of Na react with 1 mole of S]	
(ii) Number of moles of sulfur atoms that reacted =	
(iii)Mass of sulfur reacted =g	
(iv) Mass of sulfur left unreacted =g	[4]

IGCSE Grade (10)
 J. 03 (2. c) (c) Each tablet contains the same number of moles of CaCO₃ and MgCO₃. One tablet reacted with excess hydrochloric acid to produce 0.24 dm³ of carbon dioxide at r.t.p.
$CaCO_3 + 2HCI \longrightarrow CaCl_2 + CO_2 + H_2O$
$MgCO_3 + 2HCI \longrightarrow MgCl_2 + CO_2 + H_2O$
(i) Calculate how many moles of CaCO $_3$ there are in one tablet.
number of moles CO ₂ =
number of moles of CaCO ₃ and MgCO ₃ =
number of moles of CaCO ₃ =
[3] (ii) Calculate the volume of hydrochloric acid, 1.0 mol /dm³, needed to react with one tablet.
number of moles of CaCO ₃ and MgCO ₃ in one tablet =
Use your answer to (c)(i) .
number of moles of HC/ needed to react with one tablet =
volume of hydrochloric acid, 1.0 mol /dm ³ , needed to
react with one tablet =
[2]
6. N. 03 (5. d) (d) Sulfur dioxide reacts with chlorine in an addition reaction to form sulfuryl chloride. $SO_2 + Cl_2 \longrightarrow SO_2Cl_2$
8.0 g of sulfur dioxide was mixed with 14.2 g of chlorine. The mass of one mole of SO_2CI_2 is 135 g.
Calculate the mass of sulfuryl chloride formed by this mixture.
Calculate the number of moles of SO ₂ in the mixture =
Calculate the number of moles of Cl_2 in the mixture =

IGCSE Grade (1	0)
Which reagent was not in excess?	
How many moles of SO ₂ Cl ₂ were formed =	
Calculate the mass of sulfuryl chloride formed = g	5]
7. J. 04 (3. An organic compound decomposes to form nitrogen.	a)
$C_6H_5N_2CI(_{\text{aq}}) \rightarrow C_6H_5CI_{(I)} + N_{2(g)}$	
(a) Explain the state symbols.	
aq	
Ι	
g[2]
	-
 8. J. 04 (7) Chemists use the concept of the mole to calculate the amounts of chemicals involved in a reaction. 	')
(a) Define mole.	
[*	1]
(b) 3.0 g of magnesium was added to 12.0 g of ethanoic acid.	
Mg + 2CH ₃ COOH \rightarrow (CH ₃ COO) ₂ Mg + H ₂	
The mass of one mole of Mg is 24 g.	
The mass of one mole of CH3COOH is 60 g.	
(i) Which one, magnesium or ethanoic acid, is in excess? You must show your reasoning.	
[:	3]

IGCSE Grade (10)
(ii) How many moles of hydrogen were formed?
[1]
(iii) Calculate the volume of hydrogen formed, measured at r.t.p
[2]
(c) In an experiment, 25.0cm ³ of aqueous sodium hydroxide, 0.4mol /dm ³ was neutralised by 20.0cm ³ of aqueous oxalic acid, H ₂ C ₂ O ₄ .
$2NaOH + H_2C_2O_4 \rightarrow Na_2C_2O_4 + 2H_2O$
Calculate the concentration of the oxalic acid in mol /dm ³
(i) Calculate the number of moles of NaOH in 25.0 cm ³ of 0.4 mol /dm ³ solution.
[1]
(ii) Use your answer to (i) and the mole ratio in the equation to find out the number of moles of $H_2C_2O_4$ in 20 cm ³ of solution.
[1]
(ii) Calculate the concentration, mol /dm ³ , of the aqueous oxalic acid.
[2]

IGCSE	Grade (10)
 9. (c) Iron(III) sulfate decomposes when heated. Calculate the mass of iron(III) oxid formed and the volume of sulfur trioxide produced when 10.0 g of iron(III) sulfate was heated. 	N. 04 (7. c) e ate
Mass of one mole of Fe ₂ (SO ₄) ₃ is 400 g.	
$Fe_2(SO_4)_{3(s)} \longrightarrow Fe_2O_{3(s)} + 3SO_{3(g)}$	
Number of moles of Fe ₂ (SO ₄) ₃ =	
Number of moles of Fe ₂ O ₃ formed =	
Mass of iron(III) oxide formed =	g
Number of moles of SO ₃ produced =	
Volume of sulfur trioxide at r.t.p. =	dm ³ [5]
 10. J. (c) 0.015 moles of iodine react with 0.045 moles of chlorine to form 0.030 moles product. Complete the equation. l₂ + Cl₂ → (d) Traces of chlorine can be separated from bromine vapour by diffusion. Which gas would diffuse the faster and why? 	05 (1. c, d) of a single [2]
 11. (d) Gypsum is hydrated calcium sulfate, CaSO₄.xH₂O. It contains 20.9% water by r Calculate x. Mr: CaSO₄, 136; H₂O, 18. 	J. 05 (4. d) mass.
79.1 g of CaSO ₄ =	moles
20.9 g of H ₂ O =	moles
x =	[3]

12.(a) The following method is used to make crystals of hydrated nickel sulfate.	N. 05 (6. a)
An excess of nickel carbonate, 12.0 g, was added to 40 cm ³ of sulfuric ac mol/dm ³ . The unreacted nickel carbonate was filtered off and the filtrate e obtain the crystals.	id, 2.0 vaporated to
$NiCO_3 + H_2SO_4 \longrightarrow NiSO_4 + CO_2 + H_2O$	
$NiSO_4 + 7H_2O \longrightarrow NiSO_4.7H_2O$	
Mass of one mole of NiSO ₄ .7 H_2O = 281 g	
Mass of one mole of $NiCO_3 = 119 g$	
(i) Calculate the mass of unreacted nickel carbonate.	
Number of moles of H_2SO_4 in 40 cm ₃ of 2.0 mol/dm ₃ acid = 0.08	
Number of moles of NiCO ₃ reacted =	
Mass of nickel carbonate reacted =	g
Mass of unreacted nickel carbonate =	g [3]
(ii) The experiment produced 10.4 g of hydrated nickel sulfate. Calculate the percentage yield.	
The maximum number of moles of NiSO ₄ .7H ₂ O that could be formed =	
The maximum mass of NiSO ₄ .7H ₂ O that could be formed =	g
The percentage yield =%	[3]

Grade (10)

IGCSE

IGCSE Grade (10)
13.(d) Propene reacts with hydrogen iodide to form 2 - iodopropane.
$CH_3-CH=CH_2 + HI \longrightarrow CH_3-CHI-CH_3$
1.4 g of propene produced 4.0 g of 2 - iodopropane.
Calculate the percentage yield.
moles of CH ₃ –CH=CH ₂ reacted =
maximum moles of CH_3 – CHI – CH_3 that could be formed =
mass of one mole of CH ₃ –CHI–CH ₃ = 170 g
maximum mass of 2 - iodopropane that could be formed =
percentage yield% [4]
14. N. 06 (3. b) (b) When calcium carbonate is heated strongly, it decomposes.
14. (b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$
14.N. 06 (3. b)(b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of:
14.N. 06 (3. b)(b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: $CaCO_3$
14.N. 06 (3. b)(b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: $CaCO_3$ CaCO_3CaO
14.N. 06 (3. b)(b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: CaCO_3
14.N. 06 (3. b)(b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: CaCO_3 CaOCaO_3CaO(ii) 7.00 kg of calcium oxide was formed. What mass of calcium carbonate was heated?
14. N. 06 (3. b) (b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: $CaCO_3$ CaCO_3 [2] (ii) 7.00 kg of calcium oxide was formed. What mass of calcium carbonate was heated?
14. N. U6 (3. b) (b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: $CaCO_3$ CaO
14. N. 06 (3. b) (b) When calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$ (i) Calculate the relative formula mass of: $CaCO_3$

15.

Grade (10)

N. 06 (6. a)

An ore of copper is the mineral, chalcopyrite. This is a mixed sulfide of iron and copper.

- (a) Analysis of a sample of this ore shows that 13.80 g of the ore contained
- 4.80g of copper, 4.20 g of iron and the rest sulfur.

Complete the table and calculate the empirical formula of chalcopyrite.

	copper	iron	sulphur
composition by mass/g	4.80	4.20	
number of moles of atoms			
simplest mole ratio of atoms			

The empirical formula is.....[1]

16.

J. 07 (7. d)

[3]

(d) A better way of measuring the degree of unsaturation is to find the iodine number of the unsaturated compound.

This is the mass of iodine that reacts with all the double bonds in 100 g of the fat. Use the following information to calculate the number of double bonds in one molecule of the fat.

Mass of one mole of the fat is 884 g.

One mole of I_2 reacts with one mole $>c=c\leq$

The iodine number of the fat is 86.2 g.

Complete the following calculation.

100 g of fat reacts with 86.2 g of iodine.

884 g of fat reacts withg of iodine.

IGCSE Grade (10)
One mole of fat reacts with moles of iodine molecules.
Number of double bonds in one molecule of fat is[3]
 17. (ii) One piece of marble, 0.3 g, was added to 5 cm³ of hydrochloric acid, concentration 1.00 mol / dm³.
Which reagent is in excess? Give a reason for your choice.
mass of one mole of $CaCO_3 = 100 \text{ g}$
number of moles of CaCO ₃ =
number of moles of HCI =
reagent in excess is
reason
[4]
(iii) Use your answer to (ii) to calculate the maximum volume of carbon dioxide produced measured at r.t.p.
[1]
 J. 08 (7. b) (b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.24 mol / dm³, 3.95 g of crystals were obtained. Calculate the percentage yield.
$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$
Na2SO4 + 10H2O Na2SO4.10H2O
Number of moles of NaOH used =
Maximum number of moles of Na ₂ SO ₄ .10H ₂ O that could be formed =
Mass of one mole of Na ₂ SO ₄ .10H ₂ O = 322 g
Maximum yield of sodium sulphate-10-water =g
Percentage yield =% [4]

IGCSE 19. (c) (i) Calculate the mass of one mole of Fe ₂ O ₃ .2H ₂ O.	Grade (10) N. 08 (3. c)
(ii) Use your answer to (i) to calculate the percentage of iron in rust.	[1]
	[2]
20.(b) Benzene contains 92.3% of carbon and its relative molecular mass is 78.(i) What is the percentage of hydrogen in benzene?	N. 08 (4. b)
(ii) Calculate the ratio of moles of C atoms: moles of H atoms in benzen	[1] ie.
	[2]
(iii) Calculate its empirical formula and then its molecular formula.	
The empirical formula of benzene is	
The molecular formula of benzene is	[2]

21.

N. 08 (7. a)

alkanes are generally unreactive. Their reactions include combustion, substitution and cracking.

- (a) The complete combustion of an alkane gives carbon dioxide and water.
 - (i) 10 cm³ of butane is mixed with 100 cm³ of oxygen, which is an excess. The mixture is ignited. What is the volume of unreacted oxygen left and what is the volume of carbon dioxide formed?

$C_4H_{10(g)}$ + 6.5 $O_{2(g)}$ \longrightarrow $4CO_{2(g)}$ + $5H_2O_{(I)}$	
Volume of oxygen left =cm ³	
Volume of carbon dioxide formed =cm ³	[2]

22.

J. 09 (5. b)

(b) The formulae of insoluble compounds can be found by precipitation reactions.

To 12.0 cm³ of an aqueous solution of the nitrate of metal T was added 2.0 cm³ of aqueous sodium phosphate, Na₃PO₄. The concentration of both solutions was 1.0 mol / dm³. When the precipitate had settled, its height was measured.

IGCSE	Grade (10)
23. Quantities of chemicals, expressed in moles, can be used to find the formula of a compound, to establish an equation and to determine reacting masses.	J. 09 (9)
(a) A compound contains 72% magnesium and 28% nitrogen. What is its empi formula?	rical
	[2]
(b) A compound contains only aluminium and carbon. 0.03 moles of this comport reacted with excess water to form 0.12 moles of AI(OH) ₃ and 0.09 moles of	ound CH₄
Write a balanced equation for this reaction.	
	[2]
(c) 0.07 moles of silicon reacts with 7.2 g of fluorine.	
Si + $2F_2 \longrightarrow SiF_4$	
(i) Which one is the limiting reagent? Explain your choice.	
	[3]
(ii) How many moles of SiF ₄ are formed?	
	[1]

IGCSE	Grade (10)
24.	J. 2011 (32)[7, b,i]
(b) Phosphorus trichloride reacts with water to form two acids.(i) Balance the equation for this reaction.	
$PCI_3 + \dots + H_2O \rightarrow \dots + HCI + H_3PO_3$	
	[1]
25.	N. 2011 (33) [1, b and c]
(b) Predict the formula of each of the following compounds.	
(i) germanium oxide	
(ii) tellurium bromide	[2]
(c) Give the formula of each of the following ions.	
(i) fluoride	[2]
	[2]
26.	N. 2012 (31) [2, c]
(c) Fluorine, the most reactive halogen, forms compounds with t two compounds with bromine.	he other halogens. It forms
Deduce their formulae from the following information.	
Compound 1	
The mass of one mole of this compound is 137 g.	
Its formula is	[1]
Compound 2	
0.02 moles of this compound contain 0.02 moles of bromine atom	ms and 0.1 moles of fluorine
atoms.	
Its formula is	[1]